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Abstract—The characteristic parameters of coplanar multi-
strip lines embedded in multilayered lossless/lossy substrates
are commonly computed by using either quasi-TEM or full-
wave models. Several methods are provided in the literature to
deal with this type of structure. In this paper a comparative
study of quasi-TEM and rigorous solutions is carried out in
order to establish criteria for the validity of the quasi-TEM
approach. Reliable quasi-TEM and full-wave numerical data
have been properly generated by applying an enhanced spectral
domain analysis. We conclude that the quasi-TEM model yields
satisfactory results for many MIC and MMIC practical cases.
However, significant errors arise when high conductivity sub-
strates are involved in MMIC applications. A discussion about
the computation of the dynamic modal characteristic imped-
ance is also reported, showing how the insertion of the modal
orthogonality can save computational effort in a lossy multiport
system.

I. INTRODUCTION

T IS well known that microstrip-like multilayered

transmission lines play a vital role in MIC, MMIC and
high speed VLSI technologies [1], [2]. A great deal of
technical literature has been devoted to this subject. Con-
ductor and substrate losses have been either neglected or
analysed by means of perturbational techniques in many
of these works. Nevertheless, new demands of the micro-
wave technology (i.e., the joint packing of passive and
active devices and the reduction in the size of the circuits)
and the modeling of lossy interconnects, require on the
one hand the extensive use of lossy dielectric substrates
such as semiconductors and on the other hand to take into
account the thickness and the losses of the metallizations.
Conductor losses have been treated in [3]-[4] and refer-
ences therein for MIC or MMIC structures. Since [3] dis-
cussed the validity of the quasi-TEM model in case of
conductor losses, we are now concerned with the analysis
of planar transmission lines just including substrate losses.
This type of line, see Fig. 1, consists of N layers with
lossless/lossy dielectric substrates, N, zero thickness ideal
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Fig. 1. Transverse section of a multilayered, multiconductor coplanar
transmission line.

metal strips and one or two ground planes. Semiconduc-
tors, the most common lossy substrates, show a large con-
ductivity giving rise to relevant substrate losses. This fact
precludes the use of perturbational techniques in the anal-
ysis of these problems. Substrate losses must be therefore
explicitly considered in the formulation of the problem.
This has been already carried out in the quasi-TEM [5],
[6] and the full-wave approaches [7], [8] including the
lossy nature of the substrate by means of the imaginary
part of the complex dielectric permittivity.

To our knowledge, the limits of validity of the simpli-
fied quasi-TEM model have not been so clearly estab-
lished for lossy structures as much as for low losses MIC
ones. A previous knowledge of this validity range is ex-
tremely useful in order to avoid the use of the much more
involved full-wave analysis when the simpler quasi-TEM
model is sufficient. In the low-loss case, a wavelength
significantly larger than the cross dimensions is required
to assure the validity of the quasi-TEM model, in such a
way that quasi-TEM model is equivalent to quasi-static
approach. However, when arbitrary lossy substrates are
involved, the quasi-TEM concept should be revised.
Thus, the operation frequency and cross-sectional dimen-
sions are not the sole parameters to be considered. For
instance, the quasi-TEM model fails even at very low fre-
quencies if high conductivity substrates are present (even
with cross sectional dimensions as small as those involved
in MMIC technology). Moreover, the range of validity is
different for different parameters (phase constant, atten-
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vation factor, characteristic impedance). Thus, the main
purpose of the present paper is to accomplish a compar-
ative analysis (quasi-TEM versus full-wave) regarding the
different characteristic parameters of the lossy multistrip
structure, namely phase constants, attenuation factors and
complex modal characteristic impedances. The definition
of the modal characteristic impedances is also discussed
for the multiconductor lossy case. It is shown how it is
possible to obtain the modal characteristic impedances
without computing the cross powers defined in [9] when
the full-wave model is used.

Prior to carrying out the comparative analysis, we have
developed computer codes based on spectral domain for-
mulations of the quasi-TEM and full-wave problems. Al-
though the details of the implementation of these pro-
grams are out of the scope of this paper, it should be
pointed out that the accuracy and reliability of the nu-
merical results has been conveniently checked. The nu-
merical convergence has been also significantly enhanced
by using various analytical procedures [5], [10]. These
numerical schemes are specially convenient when very
thin layers are involved (i.e., metal-insulator-semicon-
ductor (MIS) structures).

II. ON THE VALIDITY OF THE QUASI-TEM MODEL

In this section, we briefly show how to determine the
validity range of the quasi-TEM model quantitatively. The
structure to be considered is shown in Fig. 1. The lossy
nature of the (i)-th layer is taken into account by means
of a complex dielectric permittivity, i.e., ¢; = €y (1 — j
tan §;), with tan §; = 0;/(we,€,;) (a complex formulation
of the problem is then required). This consideration means
that lossy substrates are assumed to be dispersive and
makes quasi-TEM model accounts directly for certain dis-
persion arising from the lossy nature of the substrates.

The quasi-TEM model is based on the assumption that
the electromagnetic fields propagating along the transmis-
sion line are essentially transverse. This condition refers
to the spatial average of the field over the cross section
rather than to the values of the fields at each point, that is

(E]Y > (|E|> and (|H)Y > {(|H)|>, 1)

where ( @ ) stands for the spatial average of the argument.
From a dimensional analysis applied to the Maxwell’s
equations, the condition (1) can be reformulated, follow-
ing [5], as
1

d << , 2)
v pol |e(r, w)|)

w being the angular frequency, {|e(r, w)|) the average
value of the module of the complex permittivity (w de-
pendent) of the multilayered medium and d the largest
transverse distance between the conductors. In a two-con-
ductor line (N, = 1) d would be the vertical distance from
the conductor to the ground plane and in a multiconductor
line (N, > 1), d would be the distance between the most
distant conductors. Expression (2) establishes that the

quasi-TEM assumption can be considered correct pro-
vided the distance between the conductors in the trans-
mission line is much smaller than the average wavelength
of the propagating fields. This condition is more stringent
than requiring transversal dimensions to be much smaller
than the free space wavelength. Note that the denominator
in the second member of the inequality can be considered
as the propagation constant of the fundamental mode in a
structure such as that in Fig. 1 when the internal metal-
lized interface is removed and the layered medium is
replaced by an equivalent medium with permittivity
(|e(r, w)| Y. As an example, for the practical MIS config-
uration, expression (2) can be rewritten (after simple al-
gebraic manipulations), requiring that d should be a mag-
nitude order minor than the average wavelength as d(in
mm) < d,,, being

15 . . _9; 2j|-l/4
f_\/;; {l + 3.24 - 10 <f6rs> , (3

€5, 0 the values of the relative permittivity and conduc-
tivity (in (2mm.) ") of the semiconductor layer, and f the
operation frequency in GHz. We have checked that the
quasi-TEM model yields accurate data for the phase con-
stant (relative errors smaller than 1% with respect to rig-
orous full-wave analysis) when condition (3) is fulfilled.
Nevertheless, the model drastically falls down in the com-
putation of the attenuation constant when high conductiv-
ities (approximately ¢ > 1(2mm.) ') are involved, even
though condition (3) is already fulfilled. These facts can
be explained from physical arguments. The quasi-TEM
model only implies that the average transverse fields are
much stronger than the average longitudinal ones, namely
the electromagnetic field distribution is essentially trans-
versal. Since the field distribution determines the phase
constant and modal impedances, these parameters should
be accurately computed in the quasi-TEM frame when-
ever (2) is fulfilled. This is also true for any parameter
depending on the field distribution (for example, the cur-
rent eigenvectors). On the contrary, the quasi-TEM model
does not account for the part of the Joule effect losses in
the semiconductor layer due to the axial current. This ef-
fect arises from the existence of relatively important lon-
gitudinal currents produced by a weak longitudinal elec-
tric field—the average electromagnetic field still satisfying
(1)—when very lossy substrates are present. In this case,
the quasi-TEM value of the attenuation constant—which
basically depends on the total Joule losses—is not realis-
tic. A full-wave analysis is then unavoidable to compute
the attenuation factor if ¢ is large enough even though
frequency is low and cross dimensions are small.

dmax =

III. Quasi-TEM AND FULL-WAVE SPECTRAL DOMAIN
ANALYSIS

Since the particular method used to generate the nu-
merical data is not the subject of the present work, we
restrict ourselves to sketch a brief outline.

The quasi-TEM propagation parameters are computed
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from the complex capacitance, [C], and vacuum capaci-
tance, [C,], matrices per unit length (p.u.l.) of the trans-
mission line system. In this work, we have applied the
Galerkin method in the spectral domain to compute the
elements of those matrices. Theoretical and numerical de-
tails on this method are reported in [5]. In that paper, a
very general multilayered multiconductor system was
treated.

The spectral domain analysis has also been employed
to compute the full-wave results. Thus, the spectral
Green’s dyad of a layered configuration can be obtained
by following either the transverse propagation matrix
technique reported in [11] or the EBM method proposed
in [12]. The Galerkin method is also used to solve the
resultant eigenvalue problem, that is

[A(w, B — je)] - ¢ =0, )

with [A] being the Galerkin matrix and ¢ the vector whose
elements are the different coefficients of the current den-
sity expansion.

The full-wave numerical scheme has been recently im-
proved to be efficiently applied to MMIC structures in-
cluding highly lossy substrates and thin layers [10]. Modal
propagation constants and field distributions are found by
solving (4). This equation has been solved by adapting
the search zeroes method proposed in [13]. As it will be
discussed in the following section, modal powers need to
be computed. These modal powers are obtained by means
of the scheme proposed in [10], [14] which makes it pos-
sible to handle systematically arbitrary multilayered and
multiconductor configurations. It should be noted here that
the total complex power must be used rather than the real
part of it [9].

Particular attention was paid to all the numerical as-
pects of the implementation of the methods in order to
ensure accuracy and numerical efficiency. The use of un-
suitable or too few basis functions as well as inaccurate
computation of the spectral integrals can result in serious
numerical errors, specially when high conductivity and/
or very thin layers are involved.

IV. MobpaAL CHARACTERISTIC IMPEDANCES AND
VOLTAGE CURRENT EIGENVECTORS

In the quasi-TEM frame, the complex modal propaga-
tion constants, vy, = (8, — jo, (arising from the complex
nature of the capacitance matrix), and the modal voltage,
V., and current, I,, eigenvectors of a N. + 1 conductor
system are defined by the following wave equations:

{Mwy[a—vﬂw=0}
(n

—_ 1, ...
{«’[C]-[L] —v31,=0

ND. ()

with [C], [L] being the N, X N, capacitance and induc-
tance matrices p.u.l. of the multiconductor system and w
the angular frequency. The current and voltage complex
eigenvectors satisfy two important rules:

vV, I, =0 form # n, v, # v, 6)

V, I =P, (N

The so-called biorthogonality condition (6) directly arises
from the eigenvector theory when applied to (5) [15].
Physically speaking, (6) stands for the reciprocity prop-
erties of the multiconductor system [16]. The second con-
dition (7)—namely the power condition—stands for the
usual complex power-voltage-current relationship in
transmission line theory.

Since eigenvalues and eigenvectors are uniquely de-
fined from (5), modal characteristic impedances are de-
fined from voltage and current eigenvectors in the follow-
ing way:

&

where n stands for the mode and j for the conductor, i.e.,
V4., I, are the jth entries of the V, and I, column vectors
in (§). Consequently, propagation constants, current and
voltage eigenvectors and impedance parameters—re-
quired in a circuital description of the system-—are di-
rectly defined in this frame. All the above quantities are
readily computed from [C] and [L] matrices.

When a full-wave model is used, a circuital description
of the lossy multiconductor system is also possible. In the
following, our discussion is restricted to the quasi-TEM
type fundamental modes rather than higher order modes
which are assumed to be evanescent. Complex modal
propagation constants are computed by solving the eigen-
value equation (4), as stated above, and therefore, these
quantities are unambiguously defined. However, the im-
precise definition of the remainder circuital parameters
(current and voltage eigenvectors and dynamic imped-
ances) has been subject of discussion in the literature, even
in the simple two-conductor line case [16]-[19]. In this
way, some comments should be pointed out here concern-
ing the significance of V7, and F/, in the full-wave frame.
Actually, certain ambiguity arises from the hybrid nature
of propagating fields. As a result of this, the voltage, V,
and the current, I, definitions are not unique. Neverthe-
less, in the two-conductor case, we know that V is related
to a certain integral of the transverse electric field E, and
I to a certain integral of the transverse magnetic field H,.
According to this, we can write the following relations
from the electromagnetic field standpoint:

gg (E, Xx Hf) - dS © VI* €
S

SL (E, x H) - dS < VI. (10)

The V and I quantities have been obtained in the liter-
ature by three different ways for a single line: a) V and [
are separately defined as integrals of the electric and mag-
netic fields along proper paths, b) I is defined as the total
z-directed current and V is computed from 7 and z-power,
V = 2P/I, and ¢) V is defined as a proper path integral
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of the electric field and / is computed from V and z-power,
I = 2P /V. All of the three options lead to the same nu-
merical results at the low frequency limit. They also agree
with quasi-TEM values assuming this approximation to
be valid. However, significant discrepancies between the
above three definitions are found when frequency in-
creases sufficiently. These differences stem from different
choices of the primary or independent and the derived
quantities [18]. From a practical point of view, the pri-
mary quantity (either current or voltage) is chosen to be
the most accesible one. In microstrip-like structures, cur-
rents are primary and voltages are derived, as it is com-
monly accepted nowadays. So, we can now compute the
voltage from the definition of complex power as follows:

P = (11

N —

SSS’ (E, X HY) + dS = 3 VI*,

S, being the cross section of the structure.

The extension of the impedance concept to a multistrip
system—in the full-wave frame—requires a little more
discussion. Apart from the propagation constants, the only
quantities uniquely obtained from a full-wave analysis of
a multistrip system are the complex modal powers, P, and
the complex current eigenvectors I,. The definition of the
complex modal power is given by:

m=%HF@JXHm-a=%w~ﬁ (12)
where we have identified the scalar product of the modal
eigenvoltage, V,, and modal eigencurrent, I,, with the
modal power in order to obtain a suitable coupled trans-
mission line model (CTL) of the system. It should be
noted that expression (12) does not completely define the
modal eigenvoltage which is the opposite to what happens
with (11) in the single microstrip case. Thus, we need
more equations to determine all the eigenvoltages. The
reciprocity theorem [20] can be used to complete the num-

ber of required equations, that is,

V., I, = SS (Ein XH, ) -dS=0 form # n.
N
(13)

If expressions (12) and (13) are combiend, we can write
the following system of equations to obtain the eigenvolt-
ages:

sz%Vk'I/Zk

koLom=1," ", Nyotes). (14
0=V,-Im(l¢m)}( aed) - (14)

Once V, vectors are obtained from (14), the modal imped-
ances are computed from (8).

The eigenvoltages could also be determined by com-
puting the modal power matrix [9], defined by

[Pl = 3[VI" - [I]%,

[V] and {I] being the eigenvoltage and eigencurrent ma-
trices (that is, matrices whose columns are the voltage,

(15)

V,, and the current, I, eigenvectors of the problem). Note
that in the lossless case [P] is a real diagonal matrix whose
entries are the power associated with each propagating
mode thus resulting that equations (15) and (14) are ex-
actly the same. However, if lossy materials are involved,
the [P] matrix is no longer diagonal because the cross
powers P, , associated with the electric field of the /th
mode and the magnetic field of the mth mode (I # m) are
not equal to zero [9]. Hence in a multiconductor lossy

_system, the procedure exposed in this work causes con-

siderable reduction of analytical and numerical effort
(P*! k # I does not need to be computed) reducing con-
sequently CPU time. The higher the number of coupled
conductors is, the lesser CPU time required is.

Notice that, in the lossless case, the formulation in the
present work reduces to that reported in [16]. In the lossy
case, expression (4) in [16] should be replaced by (14),
where the total complex modal power must be considered
instead of its real part. The definition of the dynamic
modal impedances discussed in this work has been incor-
porated in [10], where the analytical and computational
aspects related to their evaluations are stressed.

When (14) is used, the equivalence between the full-
wave impedances and the quasi-TEM ones is assured at
the low frequency limit for both, lossless and arbitrarily
lossy structures. Moreover, from a conceptual point of
view, the connection between quasi-TEM and dynamic
definitions is quite obvious.

Finally, it should be remembered here that other au-
thors [19], [21] have used a slightly different definition of
the impedance based on the concept of the partial power
associated to each line for each mode. This latter defini-
tion is indistinguishable from (15) assuming the quasi-
TEM approximation to be valid, but discrepancies can be
otherwise detected, as it has been reported in [16].

V. RESULTS

The numerical data included in this work have been ob-
tained by using two computer codes (quasi-TEM and full-
wave), which are able to deal with the generalized mul-
tilayered microstrip-like transmission lines considered in
this work. Both programs have been systematically
checked with previous results. In Figs. 2(a)-(c), we pre-
sent our quasi-TEM and full-wave data [10] together with
some experimental data (reported in [22]). Normalized
wavelength (A /N), attenuation constant (&) and complex
characteristic impedance (Z;) of a simple MIS structure
are shown for three values of semiconductor conductivity
(0). As it was predicted, a good agreement between full-
wave and quasi-TEM results is found for N/\g at fre-
quencies satisfying (3) (Fig. 2(a)). The quasi-TEM model
provides accurate results for this quantity up to 18 GHz,
220 MHz and 30 MHz for ¢ values of 0.005, 1 and 10
(Q - mm) ™! respectively. However, we can see from Fig.
2(b) that, except for the lowest conductivity case, the at-
tenuation constant should not be computed by using the
simple quasi-TEM model. The great quantitative and
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Fig. 2. (a) Normalized wavelength. (b) Attenuation constant. (c) Complex
characteristic impedance for a simple MIS configuration (510, on Si). A,
=250 pm., by = |l um., w= 160 um., ¢, | = 12, ¢, ., = 4. (+, A, ®);
Experimental values of [22], (——): Full-wave data (------- ): Quasi-
TEM data.

qualitative discrepancies existing for these high conduc-
tivity values make the quasi-TEM model unsuitable to de-
termine « at any operation frequency. The real and im-
aginary parts of Z,, plotted in Fig. 2(c), show a behavior
similar to that observed for N\ /A, in Fig. 2(a). At this
point, we can therefore conclude that phase constant and
characteristic impedance can be accurately computed by
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Fig. 3. (a) Slow-wave factor and attenuation constant. (b) Complex char-
acteristic impedance versus conductivity for the configuration of Fig. 2.
¢ }: Full-wave data, (------- ): Quasi-TEM data.

using the quasi-TEM approach as long as condition (2) is
fulfilled. However, the attenuation factor can not be pre-
dicted by means of a quasi-TEM analysis is o is too high.
This fact is ratified by the curves of Fig. 3(a)-(b). They
show the behavior of the slow-wave factor (8 /kg), (o)
and Z, versus o at a fixed frequency value (1 GHz) for the
same structure. We can note, in particular, that quasi-
TEM and full-wave data show a relative difference (con-
cerning to the quasi-TEM value) of 1% and 50% for 3 /k,
and o respectively if o = 0.6(Q - mm)~'. These discrep-
ancies become 10% for 8 /k, and 6700% for o when o =
6(Q - mm)~'. Thus, quasi-TEM values for 8 and Z, are
accurate enough in the slow-wave and dielectric mode re-
gions [23] but not in the skin-effect region. On the other
hand, quasi-TEM values of « are not valid even in the
slow-wave mode region if o is high enough. The theoret-
ical explanation of all these facts was pointed out in Sec-
tion III.

Next, we compare the results of the two models when
applied to the analysis of a multistrip transmission line.
In particular, we choose a three strip structure printed on
a three layer composite medium (semi-insulator, semi-
conductor and insulator). Firstly, we hope to verify the
validity range of the quasi-TEM model in this type of
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structure and, secondly, we are also concerned about
checking that the procedure followed to compute the full-
wave modal impedances is compatible with the quasi-

TEM one. Thus, the conductivities are choosen to make

longitudinal Joule effect losses negligible for the structure
analyzed in Fig. 4(a)-(c). The quasi-TEM and full-wave
data plotted in Fig. 4(a) show very good agreement for
the three modal slow-wave factors and attenuation con-
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Fig. 5. (a) Modal slow-wave factors. (b) Modal attenuation constants ver-
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stants for frequencies below 15 GHz, that is, when con-
dition (3) is fulfilled. Regarding the characteristic modal
impedances, we can see from Fig. 4(b) very satisfactory
agreement for the real and imaginary parts.

Figs. 5(a)-(b) show the quasi-TEM and full-wave pre-
dictions for 8 /ky and « as a function of the semiconductor
conductivity for the three-strip structure. We find that by
applying (2) to this configuration that ¢ = 0.08(Q@mm)~"
causes dp,, to be 400 um (the largest distance between
the center of the strips). Therefore, this conductivity value
shows the upper limit in which the quasi-TEM approxi-
mation can be used properly. This fact is clearly reflected
in the curves of Fig. 5(a)-(b) where we can see that this
upper limit has its main effect on mode #1. The quasi-
TEM results for the other two modes are valid at a slightly
higher conductivity value. This can be explained from the
field distribution associated with these modes. Modes #2
and #3 have a higher concentration of electric field in the
lossless layer—the sign of the components of eigencur-
rents are (+, 0, —) for mode #2 and (+, —, +) for mode
#3—than mode #1—(+, +, +)—. Anyway, the quasi-
TEM model should be used only if the all three modes are
correctly described in this frame. So, the condition in (2)
can not be considered excessively conservative for mul-
ticonductor lines.
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V. CONCLUSIONS

In this paper we have carried out a comparative analysis
in order to establish the conditions under which a quasi-
TEM model can be used in the study of the fundamental
propagating modes in planar microstrip lines currently
used in (M)MIC and high speed digital technologies. The
operation frequency, cross sectional dimensions and con-
ductivities are the main parameters to be taken into ac-
count. Phase constants and characteristic impedances are
adequately predicted under quasi-TEM assumption
whereas condition (3) is fulfilled. Attenuation constants
can be also computed by using the quasi-TEM model in
many practical cases involving lossy semiconductor sub-
strates. However, high conductivity substrates precludes
the use of the quasi-TEM approach for attenuation factor
computations even if (3) is fulfilled. A full-wave model
must be used in this case.

The dynamic modal characteristic impedances of a
lossless/lossy multiconductor structure are obtained from
primary complex mode parameters: current eigenvectors
and modal powers. Voltage eigenvectors are defined by
imposing two conditions: the bi-orthogonality of voltage
and current eigenvectors and the usual complex power/
voltage/current relationship for each propagating mode.
These conditions ensure compatibility with the transmis-
sion line theory, preserve fundamental reciprocity re-
quirements of the multiport system and match quasi-TEM
results in its validity range. In case lossy substrates are
involved, this general procedure is especially advanta-
geous because avoids the computation of cross-powers
(reported in [9]) involving different modes.
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